The search functionality is under construction.

Author Search Result

[Author] Yuichi NAKAMURA(26hit)

1-20hit(26hit)

  • Design and Performance Analysis of a Skin-Stretcher Device for Urging Head Rotation

    Takahide ITO  Yuichi NAKAMURA  Kazuaki KONDO  Espen KNOOP  Jonathan ROSSITER  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/08/03
      Vol:
    E103-D No:11
      Page(s):
    2314-2322

    This paper introduces a novel skin-stretcher device for gently urging head rotation. The device pulls and/or pushes the skin on the user's neck by using servo motors. The user is induced to rotate his/her head based on the sensation caused by the local stretching of skin. This mechanism informs the user when and how much the head rotation is requested; however it does not force head rotation, i.e., it allows the user to ignore the stimuli and to maintain voluntary movements. We implemented a prototype device and analyzed the performance of the skin stretcher as a human-in-the-loop system. Experimental results define its fundamental characteristics, such as input-output gain, settling time, and other dynamic behaviors. Features are analyzed, for example, input-output gain is stable within the same installation condition, but various between users.

  • A Loitering Discovery System Using Efficient Similarity Search Based on Similarity Hierarchy

    Jianquan LIU  Shoji NISHIMURA  Takuya ARAKI  Yuichi NAKAMURA  

     
    INVITED PAPER

      Vol:
    E100-A No:2
      Page(s):
    367-375

    Similarity search is an important and fundamental problem, and thus widely used in various fields of computer science including multimedia, computer vision, database, information retrieval, etc. Recently, since loitering behavior often leads to abnormal situations, such as pickpocketing and terrorist attacks, its analysis attracts increasing attention from research communities. In this paper, we present AntiLoiter, a loitering discovery system adopting efficient similarity search on surveillance videos. As we know, most of existing systems for loitering analysis, mainly focus on how to detect or identify loiterers by behavior tracking techniques. However, the difficulties of tracking-based methods are known as that their analysis results are heavily influenced by occlusions, overlaps, and shadows. Moreover, tracking-based methods need to track the human appearance continuously. Therefore, existing methods are not readily applied to real-world surveillance cameras due to the appearance discontinuity of criminal loiterers. To solve this problem, we abandon the tracking method, instead, propose AntiLoiter to efficiently discover loiterers based on their frequent appearance patterns in longtime multiple surveillance videos. In AntiLoiter, we propose a novel data structure Luigi that indexes data using only similarity value returned by a corresponding function (e.g., face matching). Luigi is adopted to perform efficient similarity search to realize loitering discovery. We conducted extensive experiments on both synthetic and real surveillance videos to evaluate the efficiency and efficacy of our approach. The experimental results show that our system can find out loitering candidates correctly and outperforms existing method by 100 times in terms of runtime.

  • Efficient Memory Utilization for High-Speed FPGA-Based Hardware Emulators with SDRAMs

    Kohei HOSOKAWA  Katsunori TANAKA  Yuichi NAKAMURA  

     
    PAPER-System Level Design

      Vol:
    E90-A No:12
      Page(s):
    2810-2817

    FPGA-based hardware emulators are often used for the verification of LSI functions. They generally have dedicated external memories, such as SDRAMs, to compensate for the lack of memory capacity in FPGAs. In such a case, access between the FPGAs and the dedicated external memory may represent a major bottleneck with respect to emulation speed since the dedicated external memory may have to emulate a large number of memory blocks. In this paper, we propose three methods, "Dynamic Clock Control (DCC)," "Memory Mapping Optimization (MMO)," and "Efficient Access Scheduling (EAS)," to avoid this bottleneck. DCC controls an emulation clock dynamically in accord with the number of memory accesses within one emulation clock cycle. EAS optimizes the ordering of memory access to the dedicated external memory, and MMO optimizes the arrangement of the dedicated external memory addresses to which respective memories will be emulated. With them, emulation speed can be made 29.0 times faster, as evaluated in actual LSI emulations.

  • Time Synchronization Technique Using EPON for Next-Generation Power Grids

    Yuichi NAKAMURA  Andy HARVATH  Hiroaki NISHI  

     
    PAPER

      Vol:
    E99-B No:4
      Page(s):
    859-866

    Changing attitudes toward energy security and energy conservation have led to the introduction of distributed power systems such as photovoltaic, gas-cogeneration, biomass, water, and wind power generators. The mass installation of distributed energy generators often causes instability in the voltage and frequency of the power grid. Moreover, the power quality of distributed power grids can become degraded when system faults or the activation of highly loaded machines cause rapid changes in power load. To avoid such problems and maintain an acceptable power quality, it is important to detect the source of these rapid changes. To address these issues, next-generation power grids that can detect the fault location have been proposed. Fault location demands accurate time synchronization. Conventional techniques use the Global Positioning System (GPS) and/or IEEE 1588v2 for time synchronization. However, both methods have drawbacks — GPS cannot be used in indoor situations, and the installation cost of IEEE 1588v2 devices is high. In this paper, a time synchronization technique using the broadcast function of an Ethernet Passive Optical Network (EPON) system is proposed. Experiments show that the proposed technique is low-cost and useful for smart grid applications that use time synchronization in EPON-based next-generation power grids.

  • Novel Method to Watermark Anonymized Data for Data Publishing

    Yuichi NAKAMURA  Yoshimichi NAKATSUKA  Hiroaki NISHI  

     
    PAPER-Privacy

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1671-1679

    In this study, an anonymization infrastructure for the secondary use of data is proposed. The proposed infrastructure can publish data that includes privacy information while preserving the privacy by using anonymization techniques. The infrastructure considers a situation where ill-motivated users redistribute the data without authorization. Therefore, we propose a watermarking method for anonymized data to solve this problem. The proposed method is implemented, and the proposed method's tolerance against attacks is evaluated.

  • Inter-FPGA Routing for Partially Time-Multiplexing Inter-FPGA Signals on Multi-FPGA Systems with Various Topologies

    Masato INAGI  Yuichi NAKAMURA  Yasuhiro TAKASHIMA  Shin'ichi WAKABAYASHI  

     
    PAPER-Physical Level Design

      Vol:
    E98-A No:12
      Page(s):
    2572-2583

    Multi-FPGA systems, which consist of multiple FPGAs and a printed circuit board connecting them, are useful and important tools for prototyping large scale circuits, including SoCs. In this paper, we propose a method for optimizing inter-FPGA signal transmission to accelerate the system frequency of multi-FPGA prototyping systems and shorten prototyping time. Compared with the number of I/O pins of an FPGA, the number of I/O signals between FPGAs usually becomes very large. Thus, time-multiplexed I/Os are used to resolve the problem. On the other hand, they introduce large delays to inter-FPGA I/O signals, and much lower the system frequency. To reduce the degradation of the system frequency, we have proposed a method for optimally selecting signals to be time-multiplexed and signals not to be time-multiplexed. However, this method assumes that there exist physical connections (i.e., wires on the printed circuit board) between every pair of FPGAs, and cannot handle I/O signals between a pair of FPGAs that have no physical connections between them. Thus, in this paper, we propose a method for obtaining indirect inter-FPGA routes for such I/O signals, and then combine the indirect routing method and the time-multiplexed signal selection method to realize effective time-multiplexing of inter-FPGA I/O signals on systems with various topologies.

  • Hierarchical-Analysis-Based Fast Chip-Scale Power Estimation Method for Large and Complex LSIs

    Yuichi NAKAMURA  Takeshi YOSHIMURA  

     
    PAPER-Simulation and Verification

      Vol:
    E89-A No:12
      Page(s):
    3458-3463

    This paper presents a novel power estimation method for large and complex LSIs. The proposed method is based on simulation and is used for analyzing the ways in chip-scale gate-level circuits including processors and memory are affected by gated-clock power reduction and the voltage drop due to electrical resistance. The chip-scale power estimation based on simulation patterns generally takes enormous time. In order to reduce the time to obtain accurate estimation results based on simulation patterns, we introduce three approaches: "partitioning of target LSIs and simulation pattern," "memory modeling," and "processor modeling." After placing and routing, the target LSIs are partitioned into hierarchical blocks, memory, and processors. The power consumption of each hierarchical block is calculated by using the partitioned patterns generated from chip-scale simulation patterns. The power consumption of the processor and memory blocks is estimated by a method considering the static power consumption and the rate of LSI activity ratio. Experimental results for a commercial 0.18 µm-technology media processing chip show that the proposed method is 23 times faster than the conventional method without partitioning and that both the results are almost the same.

  • Visual Emphasis of Lip Protrusion for Pronunciation Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Hiroaki NANJO  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2018/10/22
      Vol:
    E102-D No:1
      Page(s):
    156-164

    Pronunciation is a fundamental factor in speaking and listening. However, instructions for important articulation have not been sufficiently provided in conventional computer-assisted language learning (CALL) systems. One typical case is the articulation of rounded vowels. Although lip protrusion is essential for their correct pronunciation, the perception of lip protrusion is often difficult for beginners. To tackle this issue, we propose an innovative method that will provide a comprehensive visual explanation for articulation. Lip movements are three-dimensionally measured, and face images or videos are pseudocoloured on the basis of the movements. The coloured regions represent the lip protrusion of rounded vowels. To verify the learning effect of the proposed method, we conducted experiments with Japanese undergraduates in Chinese classes. The results showed that our method has advantages over conventional video materials.

  • Non-Linear Distance Filter for Modeling Effect of a Large Pointer Used in a Gesture-Based Pointing Interface

    Kazuaki KONDO  Takuto FUJIWARA  Yuichi NAKAMURA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/08/03
      Vol:
    E103-D No:11
      Page(s):
    2302-2313

    When using a gesture-based interface for pointing to targets on a wide screen, displaying a large pointer instead of a typical spot pattern reduces disturbance caused by measurement errors of user's pointing posture. However, it remains unclear why a large pointer helps facilitate easy pointing. To examine this issue, in this study we propose a mathematical model that formulates human pointing motions affected by a large pointer. Our idea is to describe the effect of the large pointer as human visual perception, because the user will perceive the pointer-target distance as being shorter than it actually is. We embedded this scheme, referred to as non-linear distance filter (NDF), into a typical feedback loop model designed to formulate human pointing motions. We also proposed a method to estimate NDF mapping from pointing trajectories, and used it to investigate the applicability of the model under three typical disturbance patterns: small vibration, smooth shift, and step signal. Experimental results demonstrated that the proposed NDF-based model could accurately reproduced actual pointing trajectories, achieving high similarity values of 0.89, 0.97, and 0.91 for the three respective disturbance patterns. The results indicate the applicability of the proposed method. In addition, we confirmed that the obtained NDF mappings suggested rationales for why a large pointer helps facilitate easy pointing.

  • Integration of Experts' and Beginners' Machine Operation Experiences to Obtain a Detailed Task Model

    Longfei CHEN  Yuichi NAKAMURA  Kazuaki KONDO  Dima DAMEN  Walterio MAYOL-CUEVAS  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:1
      Page(s):
    152-161

    We propose a novel framework for integrating beginners' machine operational experiences with those of experts' to obtain a detailed task model. Beginners can provide valuable information for operation guidance and task design; for example, from the operations that are easy or difficult for them, the mistakes they make, and the strategy they tend to choose. However, beginners' experiences often vary widely and are difficult to integrate directly. Thus, we consider an operational experience as a sequence of hand-machine interactions at hotspots. Then, a few experts' experiences and a sufficient number of beginners' experiences are unified using two aggregation steps that align and integrate sequences of interactions. We applied our method to more than 40 experiences of a sewing task. The results demonstrate good potential for modeling and obtaining important properties of the task.

  • Timing Optimization Methodology Based on Replacing Flip-Flops by Latches

    Ko YOSHIKAWA  Keisuke KANAMARU  Yasuhiko HAGIHARA  Shigeto INUI  Yuichi NAKAMURA  Takeshi YOSHIMURA  

     
    PAPER-Logic Synthesis

      Vol:
    E87-A No:12
      Page(s):
    3151-3158

    Latch-based circuits have advantages for timing and are widely used for high-speed custom circuits. ASIC design flows, however, are based on circuits with flip-flops. This paper describes a new timing optimization algorithm by replacing the flip-flops in high-end ASICs by latches without changing the functionality of the circuits. Timing is optimized by using a fixed-phase retiming minimizing the impact of clock skew and jitter. A formal equivalence verification method that assures the logical correctness of the latch-replaced circuits is also proposed. Experimental results show that the optimization algorithm decreases the delay of benchmark circuits by as much as 17%.

  • Fine-Grained Power Gating Based on the Controlling Value of Logic Elements

    Lei CHEN  Takashi HORIYAMA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E91-A No:12
      Page(s):
    3531-3538

    Leakage power consumption of logic elements has become a serious problem, especially in the sub-100-nanometer process. In this paper, a novel power gating approach by using the controlling value of logic elements is proposed. In the proposed method, sleep signals of the power-gated blocks are extracted completely from the original circuits without any extra logic element. A basic algorithm and a probability-based heuristic algorithm have been developed to implement the basic idea. The steady maximum delay constraint has also been introduced to handle the delay issues. Experiments on the ISCAS'85 benchmarks show that averagely 15-36% of logic elements could be power gated at a time for random input patterns, and 3-31% of elements could be stopped under the steady maximum delay constraints. We also show a power optimization method for AND/OR tree circuits, in which more than 80% of gates can be power-gated.

  • A Performance-Driven Circuit Bipartitioning Method Considering Time-Multiplexed I/Os

    Masato INAGI  Yasuhiro TAKASHIMA  Yuichi NAKAMURA  Yoji KAJITANI  

     
    PAPER

      Vol:
    E90-A No:5
      Page(s):
    924-931

    Lately, time-multiplexed I/Os for multi-device implementations (e.g., multi-FPGA systems), have come into practical use. They realize multiple I/O signal transmissions between two devices in one system clock cycle using one I/O wire between the devices and multiple I/O clock cycles. Though they ease the limitation of the number of I/O-pins of each device, the system clock period becomes much longer approximately in proprotion to the maximum number of multiplexed I/Os on a signal path. There is no conventional partitioning algorithm considering the effect of time-multiplexed I/Os directly. We introduce a new cost function for evaluating the suitability of a bipartition for multi-device implementations with time-multiplexed I/Os. We propose a performance-driven bipartitioning method VIOP which minimizes the value of the cost function. Our method VIOP combines three algorithms, such that i) min-cut partitioning, ii) coarse performance-driven partitioning, iii) fine performance-driven partitioning. For min-cut partitioning and coarse performance-driven partitioning, we employ a well-known conventional bipartitioning algorithms CLIP-FM and DUBA, respectively. For fine performance-driven partitioning for the final improvement of a partition, we propose a partitioning algorithm CAVP. By our method VIOP, the average cost was improved by 10.4% compared with the well-known algorithms.

  • An Engineering Change Orders Design Method Based on Patchwork-Like Partitioning for High Performance LSIs

    Yuichi NAKAMURA  Ko YOSHIKAWA  Takeshi YOSHIMURA  

     
    PAPER-Logic Synthesis

      Vol:
    E88-A No:12
      Page(s):
    3351-3357

    This paper describes a novel engineering change order (ECO) design method for large-scale, high performance LSIs, based on a patchwork-like partitioning technique. In conventional design methods, even when only small changes are made to the design after the placement and routing process, a whole re-layout must be done, and this is very time consuming. Using the proposed method, we can partition the design into several parts after logic synthesis. When design changes occur in HDL, only the parts related to the changes need to be redesigned. The netlist for the changed design remains almost the same as the original, except for the small changed parts. For partitioning, we used multiple-fan-out-points as partition borders. An experimental evaluation of our method showed that when a small change was made in the RTL description, the revised circuit part had only about 87 gates on average. This greatly reduces the re-layout time required for implementing an ECO. In actual commercial designs in which several design changes are required, it takes only one day to redesign.

  • Rule-Based Sensor Data Aggregation System for M2M Gateways

    Yuichi NAKAMURA  Akira MORIGUCHI  Masanori IRIE  Taizo KINOSHITA  Toshihiro YAMAUCHI  

     
    PAPER-Sensor network

      Pubricized:
    2016/08/24
      Vol:
    E99-D No:12
      Page(s):
    2943-2955

    To reduce the server load and communication costs of machine-to-machine (M2M) systems, sensor data are aggregated in M2M gateways. Aggregation logic is typically programmed in the C language and embedded into the firmware. However, developing aggregation programs is difficult for M2M service providers because it requires gateway-specific knowledge and consideration of resource issues, especially RAM usage. In addition, modification of aggregation logic requires the application of firmware updates, which are risky. We propose a rule-based sensor data aggregation system, called the complex sensor data aggregator (CSDA), for M2M gateways. The functions comprising the data aggregation process are subdivided into the categories of filtering, statistical calculation, and concatenation. The proposed CSDA supports this aggregation process in three steps: the input, periodic data processing, and output steps. The behaviors of these steps are configured by an XML-based rule. The rule is stored in the data area of flash ROM and is updatable through the Internet without the need for a firmware update. In addition, in order to keep within the memory limit specified by the M2M gateway's manufacturer, the number of threads and the size of the working memory are static after startup, and the size of the working memory can be adjusted by configuring the sampling setting of a buffer for sensor data input. The proposed system is evaluated in an M2M gateway experimental environment. Results show that developing CSDA configurations is much easier than using C because the configuration decreases by 10%. In addition, the performance evaluation demonstrates the proposed system's ability to operate on M2M gateways.

  • Optimal Time-Multiplexing in Inter-FPGA Connections for Accelerating Multi-FPGA Prototyping Systems

    Masato INAGI  Yasuhiro TAKASHIMA  Yuichi NAKAMURA  Atsushi TAKAHASHI  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E91-A No:12
      Page(s):
    3539-3547

    In multi-FPGA prototyping systems for circuit verification, serialized time-multiplexed I/O technique is used because of the limited number of I/O pins of an FPGA. The verification time depends on a selection of inter-FPGA signals to be time-multiplexed. In this paper, we propose a method that minimizes the verification time of multi-FPGA systems by finding an optimal selection of inter-FPGA signals to be time-multiplexed. In the experiments, it is shown that the estimated verification time is improved 38.2% on average compared with conventional methods.

  • Write Control Method for Nonvolatile Flip-Flops Based on State Transition Analysis

    Naoya OKADA  Yuichi NAKAMURA  Shinji KIMURA  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1264-1272

    Nonvolatile flip-flop enables leakage power reduction in logic circuits and quick return from standby mode. However, it has limited write endurance, and its power consumption for writing is larger than that of conventional D flip-flop (DFF). For this reason, it is important to reduce the number of write operations. The write operations can be reduced by stopping the clock signal to synchronous flip-flops because write operations are executed only when the clock is applied to the flip-flops. In such clock gating, a method using Exclusive OR (XOR) of the current value and the new value as the control signal is well known. The XOR based method is effective, but there are several cases where the write operations can be reduced even if the current value and the new value are different. The paper proposes a method to detect such unnecessary write operations based on state transition analysis, and proposes a write control method to save power consumption of nonvolatile flip-flops. In the method, redundant bits are detected to reduce the number of write operations. If the next state and the outputs do not depend on some current bit, the bit is redundant and not necessary to write. The method is based on Binary Decision Diagram (BDD) calculation. We construct write control circuits to stop the clock signal by converting BDDs representing a set of states where write operations are unnecessary. Proposed method can be combined with the XOR based method and reduce the total write operations. We apply combined method to some benchmark circuits and estimate the power consumption with Synopsys NanoSim. On average, 15.0% power consumption can be reduced compared with only the XOR based method.

  • Learning State Recognition in Self-Paced E-Learning

    Siyang YU  Kazuaki KONDO  Yuichi NAKAMURA  Takayuki NAKAJIMA  Masatake DANTSUJI  

     
    PAPER-Educational Technology

      Pubricized:
    2016/11/21
      Vol:
    E100-D No:2
      Page(s):
    340-349

    Self-paced e-learning provides much more freedom in time and locale than traditional education as well as diversity of learning contents and learning media and tools. However, its limitations must not be ignored. Lack of information on learners' states is a serious issue that can lead to severe problems, such as low learning efficiency, motivation loss, and even dropping out of e-learning. We have designed a novel e-learning support system that can visually observe learners' non-verbal behaviors and estimate their learning states and that can be easily integrated into practical e-learning environments. Three pairs of internal states closely related to learning performance, concentration-distraction, difficulty-ease, and interest-boredom, were selected as targets of recognition. In addition, we investigated the practical problem of estimating the learning states of a new learner whose characteristics are not known in advance. Experimental results show the potential of our system.

  • A Verification and Analysis Tool Set for Embedded System Design

    Yuichi NAKAMURA  

     
    INVITED PAPER

      Vol:
    E94-A No:12
      Page(s):
    2788-2793

    This paper presents a verification and analysis tool set for embedded systems. Recently, the development scale of embedded systems has been increasing since they are used for mobile systems, automobile platforms, and various consumer systems with rich functionality. This has increased the amount of time and cost needed to develop them. Consequently, it is very important to develop tools to reduce development time and cost. This paper describes a tool set consisting of three tools to enhance the efficiency of embedded system design. The first tool is an integrated tool platform. The second is a remote debugging system. The third is a clock-accurate verification system based on a field-programmable gate array (FPGA) for custom embedded systems. This tool set promises to significantly reduce the time and cost needed to develop embedded systems.

  • Hotspot Modeling of Hand-Machine Interaction Experiences from a Head-Mounted RGB-D Camera

    Longfei CHEN  Yuichi NAKAMURA  Kazuaki KONDO  Walterio MAYOL-CUEVAS  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    319-330

    This paper presents an approach to analyze and model tasks of machines being operated. The executions of the tasks were captured through egocentric vision. Each task was decomposed into a sequence of physical hand-machine interactions, which are described with touch-based hotspots and interaction patterns. Modeling the tasks was achieved by integrating the experiences of multiple experts and using a hidden Markov model (HMM). Here, we present the results of more than 70 recorded egocentric experiences of the operation of a sewing machine. Our methods show good potential for the detection of hand-machine interactions and modeling of machine operation tasks.

1-20hit(26hit)